Personalised Learning Checklists Edexcel Combined: Physics Paper 2

TOPIC	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 2 (Topics 8&9) Student Checklist	R	Α	G
Topic 8 – Energy – forces doing work	Describe the changes involved in the way energy is stored when systems change	, n	~	
	Draw and interpret diagrams to represent energy transfers			
	Explain that where there are energy transfers in a closed system there is no net change to the total energy in that system			
	Identify the different ways that the energy of a system can be changed through work done by forces, in electrical equipment and in heating			
	Describe how to measure the work done by a force and recall that energy transferred (joule, J) is equal to work done (joule, J)			
ор Г	Recall and use the equation: E = F × d			
ces	Describe and calculate the changes in energy involved when a system is changed by work done by forces			
for	Recall and use the equation to calculate the change in gravitational PE when an object is raised above			
 >	the ground: ΔGPE = m× g ×Δh			
619	Recall and use the equation to calculate the amounts of energy associated with a moving object: KE = ½			
Ene	$\times m \times v^2$			
 ∞	Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful			
ic Dic	ways			
Top	Explain that mechanical processes become wasteful when they cause a rise in temperature so			
-	dissipating energy in heating the surroundings			<u> </u>
	Define power as the rate at which energy is transferred and use examples to explain this definition			
	Recall and use the equation: P = E/t			
	Recall what one Watt is equal to			
	Recall and use the efficiency equation			
pu	Describe, with examples, how objects can interact with and without contact			
Topic 9 – Forces and their effects	Explain the difference between vector and scalar quantities using examples			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations			
	HT ONLY: Draw and use free body force diagrams			
9- Neir	HT ONLY: Explain examples of the forces acting on an isolated solid object or a system where several			
t t	forces lead to a resultant force			
To	Explain ways of reducing unwanted energy transfer through lubrication			

ΤΟΡΙΟ	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 2 (Topic 10a&10b) Student Checklist	R	Α	C
	Draw and use electric circuit diagrams			
	Describe the differences between series and parallel circuits			
	Recall how to measure potential difference using a voltmeter in series and parallel circuits			
	Define potential difference end describe what a volt is			
	Recall and use the equation: <i>E</i> = Q × V			
	Recall how to measure current using an ammeter in series and parallel circuits			
	Explain what electrical current is			
	Recall and use the equation: Q = I × t			
	Describe that when a closed circuit includes a source of potential difference there will be a current in			
_	the circuit			
t a)	Recall that current is conserved at a junction in a circuit			
par	Describe how to use a variable resistor in a circuit			
ts (Recall and use the equation: V = I × R			
Topic 10a – Electricity and circuits (part a)	Explain why, if two resistors are in series, the net resistance is increased, whereas with two in parallel the net resistance is decreased			
pu	Calculate the currents, potential differences and resistances in series circuits			
y aı	Explain the design and construction of series circuits for testing and measuring			
icit	Core Practical: Construct electrical circuits to: investigate the relationship between, V, I and R for a			
ctr	resistor and a filament lamp			
Ele	Explain how I varies with V for the following devices and how this relates to R for filament lamps, diodes			
ן מ	and fixed resistors			
10	Describe how the resistance of a light-dependent resistor(LDR) varies with light intensity			
opic	Describe how the resistance of a thermistor varies with change of temperature (neg temp thermistors only)			
-	Explain how the design and use of circuits can be used to explore the variation of resistance in: filament			-
	lamps, diodes, thermistors & LDRs			
	Recall that, when there is an electric current in a resistor, there is an energy transfer which heats the resistor			
	Explain how electrical energy is dissipated when an electrical current does work against electrical resistance			
	Explain the energy transfer when electrical energy is dissipated when an electrical current does work against electrical resistance			
	Explain ways of reducing unwanted energy transfer through low resistance wires			
	Describe the advantages and disadvantages of the heating effect of an electric current			
	Use the equation: $E = I \times V \times t$			T
	Describe power as the energy transferred per second and recall that it is measured in watt		-	ľ
_	Recall and use the equation: $P = E/t$			T
r P	Explain how the power transfer in any circuit device is related to the potential difference across it and			
(ba	the current in it			
its	Recall and use the equations: $P = I \times V$ and $P = I^2 \times R$			
Topic 10b – Electricity and circuits (part b)	Describe how, in different domestic devices, energy is transferred from batteries and a.c. mains motors and heating devices			
and	Explain the difference between direct and alternating voltage			
ţ	Describe what direct current (d.c.) is and recall the objects that supply it			
tric	Describe what alternating current (a.c.) is and recall the frequency and voltage in the UK			Ĺ
ē	Explain the difference in function between the live and the neutral mains input wires			
ш I	Explain the function of an earth wire and of fuses or circuit breakers in ensuring safety			
qo	Explain why switches and fuses should be connected in the live wire of a domestic circuit			Ĺ
ic 1	Recall the potential differences between the live, neutral and earth mains wires			ĺ
do	Explain the dangers of providing any connection between the live wire and earth			L
F	Describe, with examples, the relationship between the power ratings for domestic electrical appliances	1		

TOPIC	Student Checklist	R	Α	G
	Describe the interactions between like and unlike magnetic poles			
	Describe the uses of permanent and temporary magnetic materials including cobalt, steel, iron and nickel			
	Explain the difference between permanent and induced magnets			
せ	Describe the shape and direction of the magnetic field around bar magnets and for a uniform field			
ffe	Relate the strength of the magnetic field to the concentration of lines			
Topic 12 – Magnetism and the motor effect	Describe the use of plotting compasses to show the shape and direction of the field of a magnet and the Earth's magnetic field			
	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic			
pu	Describe how to show that a current can create a magnetic effect around a long straight conductor			
tism a	Describe the shape of the magnetic field produced and relating the direction of the magnetic field to the direction of the current			
lagne.	Recall that the strength of the field depends on the size of the current and the distance from the long straight conductor			
2	Explain how inside a solenoid the fields from individual coils can add together or cancel			
pic 12	HT ONLY: Recall what happens when a current carrying conductor is placed near a magnet experiences in terms of force			
1 0	HT ONLY: Explain how magnetic forces are due to interactions between magnetic fields			
	HT ONLY: Recall and use Fleming's left-hand rule to represent the relative directions of the force			
	HT ONLY: Use the equation: F = B× I ×I			
	HT ONLY: Explain how the force on a conductor in a magnetic field is used to cause rotation in electric			
	motors			
Topic 13 – EM induction	Explain why, in the national grid, electrical energy is transferred at different voltages			
	Explain where and why step-up and step-down transformers are used in the transmission of electricity in the national grid			
	Use the power equation (for transformers with 100% efficiency): $V_p \times I_p = V_s \times I_s$			

	Use a simple kinetic theory model to evolute the different states of mottor	
	Use a simple kinetic theory model to explain the different states of matter Recall and use the equation: $\rho = m/V$	
	Core Practical: Investigate the densities of solid and liquids	
	Explain the differences in density between the different states of matter in terms of the arrangements	
	of the particles	
		++
	Name and describe the physical changes of state	
e	Describe the differences between chemical and physical changes	_
Topic 14 – Particle model	Explain how heating a system will change the energy stored within the system and affect temperature at the state of the material	
	Define the terms specific heat capacity and specific latent heat and explain the differences between them	
- Pa	Use the equation: $\Delta Q = m \times c \times \Delta \theta$	
4	Use the equation: Q = m × L	
ic 1	Explain ways of reducing unwanted energy transfers through thermal insulation	
Тор	Core Practical: Investigate the properties of water by determining the specific heat capacity of water for melting ice	
	Explain the pressure of a gas in terms of the motion of its particles	
	Explain the effect of changing the temperature of a gas on the velocity of its particles and hence on the pressure	
	Describe the term absolute zero, −273 °C, in terms of movement of particles	
	Convert between the kelvin and Celsius scales	
	HT ONLY: Explain why doing work on a gas can increase its temperature, including a bicycle pump	
s	Explain, using springs and other elastic objects, that stretching, bending or compressing an object	
r ce	requires more than one force	
Fo	Describe the difference between elastic and inelastic distortion	
ла Да	Recall and use the equation for linear elastic distortion including calculating the spring constant: F = k x x	
oic 15 – Forc and matter	Use the equation to calculate the work done in stretching a spring: $E = \frac{1}{2} k x x^2$	
Topic 15 – Forces and matter	Describe the difference between linear and non-linear relationships between force and extension	
	Core Practical: Investigate the extension and work done when applying forces to a spring	