

	Edexcel Physics (1PI0) from 2016 Topics P1,8&9			
TOPIC	Student Checklist	R	Α	G
Topic 1 – Key concepts	Recall and use the SI unit for physical quantities, as listed in the specification			
	Recall and use multiples and sub-multiples of units, including giga (G), mega (M), kilo (k), centi (c), milli			
	(m), micro (μ) and nano (n)			
pig 20	Be able to convert between different units, including hours to seconds			
1	Use significant figures and standard form where appropriate			
	Describe the changes involved in the way energy is stored when systems change			
	Draw and interpret diagrams to represent energy transfers			
	Explain that where there are energy transfers in a closed system there is no net change to the total			
	energy in that system			
	Identify the different ways that the energy of a system can be changed through work done by forces, in			
ork	electrical equipment and in heating			
>	Describe how to measure the work done by a force and recall that energy transferred (joule, J) is equal			
ing	to work done (joule, J)			
s dc	Recall and use the equation: $\mathbf{E} = \mathbf{F} \times \mathbf{d}$			
Ş	Describe and calculate the changes in energy involved when a system is changed by work done by forces			
Į.	Recall and use the equation to calculate the change in gravitational PE when an object is raised above			
25	the ground: $\triangle GPE = m \times g \times \Delta h$			
erg	Recall and use the equation to calculate the amounts of energy associated with a moving object: $KE = \frac{1}{2}$			
Ē	$\times m \times v^2$			
Topic 8 – Energy – forces doing work	Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful			
pic	ways			<u> </u>
₽	Explain that mechanical processes become wasteful when they cause a rise in temperature so			
	dissipating energy in heating the surroundings			
	Define power as the rate at which energy is transferred and use examples to explain this definition			
	Recall and use the equation: $P = E/t$			
	Recall what one Watt is equal to			$\vdash \vdash \vdash$
	Recall and use the efficiency equation			
v	Describe, with examples, how objects can interact with and without contact			
ect	Explain the difference between vector and scalar quantities using examples			
d their effects	HT ONLY: Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations			
eir	HT ONLY: Draw and use free body force diagrams			$\vdash \vdash \vdash$
두	HT ONLY: Explain examples of the forces acting on an isolated solid object or a system where several			
_	forces lead to a resultant force			
Ses	Phy ONLY: Describe situations where forces can cause rotation Phy ONLY: Recall and use the equation: moment of a force = force × distance normal to the direction of			
Topic 9 – Forces ar	the force			
Ī	Phy ONLY: Recall and use the principle of moments in situations where rotational forces are in			
ic 9	equilibrium			
op.	Phy ONLY: Explain how levers and gears transmit the rotational effects of forces			
-	Explain ways of reducing unwanted energy transfer through lubrication			$\vdash \vdash$
	Explain ways of reducing unwanted energy transfer tillough fublication	1]

	Edexcel Physics (1PI0) from 2016 Topics P10 a/b & 11			
TOPIC	Student Checklist	R	Α	G
	Describe the structure of the atom, limited to the position, mass and charge of protons, neutrons and	1		
	electrons			
	Draw and use electric circuit diagrams			
	Describe the differences between series and parallel circuits			
t a	Recall how to measure potential difference using a voltmeter in series and parallel circuits			
Topic 10a – Electricity and circuits- part	Define potential difference end describe what a volt is			
ts-	Recall and use the equation: $E = Q \times V$			
Cũ	Recall how to measure current using an ammeter in series and parallel circuits			
Ė	Explain what electrical current is			
pu	Recall and use the equation: $\mathbf{Q} = \mathbf{I} \times \mathbf{t}$			
e ≥	Describe that when a closed circuit includes a source of potential difference there will be a current in			
įΞ	the circuit			
ecti	Recall that current is conserved at a junction in a circuit			
Ψ̈́	Describe how to use a variable resistor in a circuit			
e I	Recall and use the equation: $V = I \times R$			
10	Explain why, if two resistors are in series, the net resistance is increased, whereas with two in parallel			
pid	the net resistance is decreased			
ř	Calculate the currents, potential differences and resistances in series circuits			
	Explain the design and construction of series circuits for testing and measuring			
	Core Practical: Construct electrical circuits to: investigate the relationship between, V, I and R for a resistor and a filament lamp			
	Explain how I varies with V for the following devices and how this relates to R for filament lamps,			_
	diodes and fixed resistors			
	Describe how the resistance of a light-dependent resistor(LDR) varies with light intensity			-
	Describe how the resistance of a fight-dependent resistor(LDK) varies with fight intensity Describe how the resistance of a thermistor varies with change of temperature (neg temp thermistors			-
	only)			
	Explain how the design and use of circuits can be used to explore the variation of resistance in:			
	filament lamps, diodes, thermistors & LDRs			
	Recall that, when there is an electric current in a resistor, there is an energy transfer which heats the			
	resistor			
	Explain how electrical energy is dissipated when an electrical current does work against electrical			
t b	resistance			
part b	Explain the energy transfer when electrical energy is dissipated when an electrical current does work			
	against electrical resistance			
ij	Explain ways of reducing unwanted energy transfer through low resistance wires			
Ci.	Describe the advantages and disadvantages of the heating effect of an electric current			
D D	Use the equation: $E = I \times V \times t$			
es Se	Describe power as the energy transferred per second and recall that it is measured in watt			
ici	Recall and use the equation: $P = E/t$			
Topic 10b – Electricity and circuits-	Explain how the power transfer in any circuit device is related to the potential difference across it and			-
픕	the current in it			
ا و	Recall and use the equations: $P = I \times V$ and $P = I^2 \times R$			-
10				-
pic	Describe how, in different domestic devices, energy is transferred from batteries and a.c. mains motors and heating devices			
2	Explain the difference between direct and alternating voltage			-
	Describe what direct current (d.c.) is and recall the objects that supply it			-
				-
	Describe what alternating current (a.c.) is and recall the frequency and voltage in the UK	1		_
	Explain the difference in function between the live and the neutral mains input wires	-		<u> </u>
	Explain the function of an earth wire and of fuses or circuit breakers in ensuring safety	-		\vdash
	Explain why switches and fuses should be connected in the live wire of a domestic circuit	1		\vdash
	Recall the potential differences between the live, neutral and earth mains wires	1		\vdash
	Explain the dangers of providing any connection between the live wire and earth	-		<u> </u>
	Describe, with examples, the relationship between the power ratings for domestic electrical			
	appliances and the changes in energy when used			

	Phy ONLY: Explain how an insulator can be charged by friction, through the transfer of electrons	
	Phy ONLY: Explain how insulating materials become charged due to the loss or gain of electrons	
>	Phy ONLY: Describe the interactions between like charges and unlike charges	
icit	Phy ONLY: Explain common electrostatic phenomena for movement of electrons, inc: shocks from	
electricity	objects, lightning & attraction by induction	
	Phy ONLY: Explain how earthing removes excess charge	
Static	Phy ONLY: Explain some of the uses of electrostatic charges in everyday situations	
Sta	Phy ONLY: Describe some of the dangers of sparking in everyday situations	
1 -	Phy ONLY: Define what an electric field is	
c 1	Phy ONLY: Describe the shape and direction of the electric field around a point charge and between	
Topic	parallel plates	
-	Phy ONLY: Relate the electrical strength of the field to the concentration of lines	
	Phy ONLY: Explain how the concept of an electric field helps to explain the phenomena of static	
	electricity	

	Edexcel Physics (1PI0) from 2016 Topics P12&13	ı		
TOPIC	Student Checklist	R	Α	G
	Describe the interactions between like and unlike magnetic poles			
Topic 12 – Magnetism and the motor effect	Describe the uses of permanent and temporary magnetic materials including cobalt, steel, iron and			
	nickel			
	Explain the difference between permanent and induced magnets			
	Describe the shape and direction of the magnetic field around bar magnets and for a uniform field			
	Relate the strength of the magnetic field to the concentration of lines			
	Describe the use of plotting compasses to show the shape and direction of the field of a magnet and			
Ď	the Earth's magnetic field			
e	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must			
£	be magnetic			
E E	Describe how to show that a current can create a magnetic effect around a long straight conductor			
E	Describe the shape of the magnetic field produced and relating the direction of the magnetic field to			
stis	the direction of the current			
gne	Recall that the strength of the field depends on the size of the current and the distance from the long			
Ma	straight conductor			
Ţ	Explain how inside a solenoid the fields from individual coils can add together or cancel			
17	HT ONLY: Recall what happens when a current carrying conductor is placed near a magnet			
ğ	experiences in terms of force			
ĭ	HT ONLY: Explain how magnetic forces are due to interactions between magnetic fields			
	HT ONLY: Recall and use Fleming's left-hand rule to represent the relative directions of the force			
	HT ONLY: Use the equation: F = B× I ×I			
	HT ONLY: Explain how the force on a conductor in a magnetic field is used to cause rotation in electric			
	motors			
	HT & Phy ONLY: Explain how to produce an electric current by the relative movement of a magnet			
	and a conductor in the lab & on a large-scale			
	HT & Phy ONLY: Recall the factors that affect the size and direction of an induced potential difference			
	HT & Phy ONLY: Describe how the magnetic field produced opposes the original change			
	HT & Phy ONLY: Explain how electromagnetic induction is used in alternators to generate alternating			
Ξ	current (a.c)			
etic induction	HT & Phy ONLY: Explain how electromagnetic induction is used in dynamos to generate direct current			
pg	(d.c.)			
Ë	HT & Phy ONLY: Explain the action of the microphone in converting sound waves into variations in			
	current			
omagn	HT & Phy ONLY: Explain the action of loudspeakers and headphones in converting current into sound			
	waves			
ŧ	HT & Phy ONLY: Explain how an alternating current in one circuit can induce a current in another			
Topic 13 – Electromagn	circuit in a transformer			
	HT & Phy ONLY: Recall that a transformer can change the size of an alternating voltage			
	HT & Phy ONLY: Use the turns ratio equation for transformers to calculate either voltage or number			
	of turns: $V_p/V_s = N_p/N_s$			
Ĕ	Explain why, in the national grid, electrical energy is transferred at different voltages			
	Explain where and why step-up and step-down transformers are used in the transmission of electricity			
	in the national grid			
	Use the power equation (for transformers with 100% efficiency): $V_p \times I_p = V_s \times I_s$			
	HT & Phy ONLY: Explain the advantages of power transmission in high voltage cables, using the			
	equations from the spec			

	Edexcel Physics (1PI0) from 2016 Topics P12&13			
TOPIC	Student Checklist	R	Α	G
	Use a simple kinetic theory model to explain the different states of matter			
	Recall and use the equation: $\rho = m/V$			
	Core Practical: Investigate the densities of solid and liquids			
	Explain the differences in density between the different states of matter in terms of the arrangements			
	of the particles			
	Name and describe the physical changes of state			
	Describe the differences between chemical and physical changes			
	Explain how heating a system will change the energy stored within the system and affect temperature at			
	the state of the material			
Topic 14 – Particle model	Define the terms specific heat capacity and specific latent heat and explain the differences between them			
Ē	Use the equation: $\Delta Q = m \times c \times \Delta \theta$			
ij	Use the equation: $Q = m \times L$			
arı	Explain ways of reducing unwanted energy transfers through thermal insulation			
ī	Core Practical: Investigate the properties of water by determining the specific heat capacity of water for			
14	melting ice			
Ö	Explain the pressure of a gas in terms of the motion of its particles			
욘	Explain the effect of changing the temperature of a gas on the velocity of its particles and hence on the			
	pressure			
	Describe the term absolute zero, −273 °C, in terms of movement of particles			
	Convert between the kelvin and Celsius scales			
	Phy ONLY: Explain that gases can be compressed or expanded by pressure changes			
	Phy ONLY: Explain that the pressure of a gas produces a net force at right angles to any surface			
	Phy ONLY: Explain the effect of changing the volume of a gas on the rate at which its particles collide			
	with the walls of its container and therefore pressure			
	Phy ONLY: Use the equation: $P_1 \times V_1 = P_2 \times V_2$			
	HT ONLY: Explain why doing work on a gas can increase its temperature, including a bicycle pump			
	Explain, using springs and other elastic objects, that stretching, bending or compressing an object			
	requires more than one force			
	Describe the difference between elastic and inelastic distortion			
	Recall and use the equation for linear elastic distortion including calculating the spring constant: $F = k x x$			
	Use the equation to calculate the work done in stretching a spring: E = ½ k x x ²			
	Describe the difference between linear and non-linear relationships between force and extension			
_	Core Practical: Investigate the extension and work done when applying forces to a spring			
tte	Phy ONLY: Explain why atmospheric pressure varies with height above the Earth's surface with refer to			
ä	Earth's atmosphere			
힏	Phy ONLY: Describe the pressure in a fluid as being due to the fluid and atmospheric pressure			
sal	Phy ONLY: Recall that the pressure in fluids causes a force normal to any surface			
rce	Phy ONLY: Explain how pressure is related to force and area, using appropriate examples			
ß.	Phy ONLY: Recall and use the equation: P = F/A			
η̈́	Phy ONLY: Describe how pressure in fluids increases with depth and density			
ic 1	HT & Phy ONLY: Explain why the pressure in liquids varies with density and depth			
Topic 15 – Forces and matter	HT & Phy ONLY: Use the equation to calculate the magnitude of pressure in liquids & differences at			
-	different depths: $P = h \times \rho \times g$			
	HT & Phy ONLY: Explain why an object in a fluid is subject to an upwards force (upthrust)			
	HT & Phy ONLY: Relate upthrust to examples including objects that are fully immersed in a fluid (liquid			
	or gas)			
	HT & Phy ONLY: Relate upthrust to examples including objects that are partially immersed in a liquid			
	HT & Phy ONLY: Recall that the upthrust is equal to the weight of fluid displaced			
	HT & Phy ONLY: Explain the factors influence whether an object will float or sink			